Higman Ideal, Stable Hochschild Homology and Auslander-reiten Conjecture

نویسندگان

  • YUMING LIU
  • GUODONG ZHOU
چکیده

Let A and B be two finite dimensional algebras over an algebraically closed field, related to each other by a stable equivalence of Morita type. We prove that A and B have the same number of isomorphism classes of simple modules if and only if their 0-degree Hochschild Homology groups HH0(A) and HH0(B) have the same dimension. The first of these two equivalent conditions is claimed by the Auslander-Reiten conjecture. For symmetric algebras we will show that the Auslander-Reiten conjecture is equivalent to other dimension equalities, involving the centers and the projective centers of A and B. This motivates our detailed study of the projective center, which now appears to contain the main obstruction to proving the Auslander-Reiten conjecture for symmetric algebras. As a by-product, we get several new invariants of stable equivalences of Morita type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Auslander-Reiten Conjecture for Group Rings

This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...

متن کامل

Algebraic Modules and the Auslander–Reiten Quiver

Recall that an algebraic module is aKG-module that satisfies a polynomial with integer coefficients, with addition and multiplication given by direct sum and tensor product. In this article we prove that non-periodic algebraic modules are very rare, and that if the complexity of an algebraic module is at least 3, then it is the only algebraic module on its component of the (stable) Auslander–Re...

متن کامل

Preprojective Modules and Auslander-Reiten Components

In [2], Auslander and Smalø introduced and studied extensively preprojective modules and preinjective modules over an artin algebra. We now call a module hereditarily preprojective or hereditarily preinjective if its submodules are all preprojective or its quotient modules are all preinjective, respectively. In [4], Coelho studied Auslander-Reiten components containing only hereditarily preproj...

متن کامل

Finite Generation of Tate Cohomology

Let G be a finite group and let k be a field of characteristic p. Given a finitely generated indecomposable non-projective kG-module M , we conjecture that if the Tate cohomology Ĥ ∗ (G, M) of G with coefficients in M is finitely generated over the Tate cohomology ring Ĥ ∗ (G, k), then the support variety VG(M) of M is equal to the entire maximal ideal spectrum VG(k). We prove various results w...

متن کامل

Auslander-Reiten theory in a Krull-Schmidt category

We first introduce the notion of an Auslander-Reiten sequence in a Krull-Schmidt category. This unifies the notion of an almost split sequence in an abelian category and that of an Auslander-Reiten triangle in a triangulated category. We then define the Auslander-Reiten quiver of a Krull-Schmidt category and describe the shapes of its semi-stable components. The main result generalizes those fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010